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STABILITY OF THE UNIFORM ROTATION OF A GYROSTAT ROUND THE VERTICAL 
MAIN AXIS ON AN ABSOLUTELY SMOOTH HORIZONTAL PLANE* 

S.A. BELIKOV 

The motion of a gyrostat on an absolutely smooth plane is discussed. A 
Hamilton function which gives the canonical equations of motion is 
obtained. This admits of particular solutions, namely uniform rotations 
round a vertical axis which are identical with that of the uniform rotations 
of the rotor. A transition to a system with two degrees of freedom is 
realized, and the expansion of the Hamiltonian in the vicinity of the 
corresponding position of equilibrium, with an accuracy to within fourth- 
order terms, is obtained. In the region of admissible values of the 
parameters the domain of the necessary stability conditions, and the 
domains where the Hamiltonian functions are of fixed sign and alternating, 
are examined. In those cases where the Hamiltonian is not fixed sign, 
its normalization is performed, both a non-resonance situation and 
resonances of the first, second and fourth order being considered. The 
sufficient conditions for stability of uniform gyrostat rotation in terms 
of constraints on the coefficients of normal forms are obtained. For a 
clear interpretation of the results, special cases where the values of 
all the parameters except two are fixed, are given. The plane domain of 
the necessary stability conditions and resonance curves are constructed, 
and using computer results stability on the curves is discussed. 

The stability of uniform rotations of a heavy solid around the 
vertical principal and minor axes on an absolutely smooth, and on an 
absolutely rough horizontal plane , and also on a plane with viscous 
frictionis discussed in /l-4/. The stability of uniform rotations of 
a gyrostat round the vertical principal axis on absolutely smooth and 
absolutely rough horizontal planes was considered in /5, 6/. Investigations 
of the motion of a solid on an absolutely rough plane, the body being 
perturbed with respect to rotation round the principal axis (in particular 
with respect to the steady position of equilibrium), are described in 

*Prikl.I4atem.I4ekhan.,50,1,73-82,1986 
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/I, W. The stability of two types of rotation of a homogeneous ellipsoid 
on an absolutely smooth horizontal plane, in particular the stability of 
the uniform rotations of an ellipsoid round the vertical principal axis 
is discussed in /9/. 

1. Consider the motion of a heavy solid under the influence of the force of gravity on 
an absolutely smooth horizontal plane. Suppose that the body (housing) has a cavity, and the 
axis of rotation of a symmetric gyroscope which rotates without friction in the cavity with a 
constant arbitrary angular velocity or0 relatively to the housing, Is connected rigidly to the 
body. We will assume that the surface bounding the body is convex so that it comes into 
contact with the horizontal plane only at one of its points where the surface has a definite 
tangent plane. We introduce a fixed system of rectangular coordinates OXYZ , with the origin 
at the point 0 of the reference plane Z = 0, and the coordinate system SE'q'6' which is 
rigidly connected with the housing. The axes of the latter are directed along the principal 
centre axes of inertia of the gyrostat (i.e. of the housing-gyroscope system). We will assume 
that the axis of rotation of the gyroscope coincides with the axis Sq'. We shall define the 
position of the housing by the coordinates X,, Y, of the point S, and by Euler's angles 
8, 'p and $ which orient the system s&'q'6' with respect to OXYZ. The Hamilton function 
which defines the canonical equations of the gyrostat's motion has the form 

A = 8cI, - Y2, 8 = I,, - Zps~Zm-’ + Mx’ 

Q = (Ill - Zl,aZ,,~l + MXaP) sin29 

Y = (IIS - Z,J,,ZS8+ + Mxx.& sin 0 

a = NJ; - Dq' sin cp, B = A (Is8 cos 0 + Zls sin 9) Z;: 

Y= -_A~z~~++Mg(~sine+5’c0se)n= 
pg-D~'sin8coscp, x=ncose-_sinea= 
E'sincp+$cescp, X2=gcos(P-$sincp 

I,, = (A sina? + B cos*cp) 00s*e + C sin*e, I,, = 
A cos2cp + B sinam, I,, = (A sinam + B co&q) sin*9 + 
C cos*8, I,, = -(A - B) sin cp cos cp cos 8, I,, = -(A sin*9 + 
B cosacp - C) sin 9 cos 9, I,, = (A - B) sin cp cos cp sin 9) 

Here p, q,pe,p,,p* are the gneralized momenta which correspond to x,,Y,,e,q~,q,;M is the 
mass of the gyrostat; 9 is the acceleration due to gravity; &',q', 6' are the coordinates of 
the point of contact between the body and the plane in the system SE'n'f', which are functions 
of 8 and cp determined by the form of the equation defining the housing surface, and at the 
same time 

(f"sin cp + 9" cos cp) sin 8 + 5” cos 8 = 0 

where the point denotes differentiation with respect to 9 or cp;I,,(i,j = 1, 2,s) are the com- 
ponents of the energy tensor of the gyrostat relative to the right-hand orthogonal system of 
coordinates SX’Y’Z’ whose SZ’ axis is directed vertically upward, the SY’ axis runs on 
the line of nodes in the direction in which SZ’ axis rotates anticlockwise by an angle 9 
until it coincides with the SC axis; A, B, C are the principal central moments of inertia 
of the gyrostat, and D denotes its axial moment of inertia. 

2, The canonical equations of the gyrostat motion with the Hamilton function (1.1) admit 
of the particular solution 

P = PO, Q = Qov Pe = Ps = 0 (2.1) 

p$ = Bo,” + Doso, X, = M-‘pet + X,” 

Y; = M-‘pot + Y,o, e = n/2, cp = 0, I) = o,“t + q. 

which corresponds to uniform rotation of the housing, with an arbitrary angular velocity o10 
around the Sq’ axis which is vertical. Here the centre of mass S of the gyrostat moves With 
a constnat velocity along a horizontal straight line. Without loss of generality we can assume 
that the centre is fixed. The coordinates X,,Y, and ?# are cyclic, and therefore the system 
discussed has two degrees of freedom. 

We consider the perturbations 

Pe = a', PB = n.‘, 0 = n/2 + K’, 'p=y2' 
and find an expansion of the Hamilton function of the system in the vicinity of the position 
of equilibrium, which corresponds to the stable motion (2.11, with an accuracy to within 
fourth-order terms with respect to x1', x,',YI' and y,'. Let h be the distance from the centre 



the plane during the unperturbed motion 
(2.1),v'=h+ 9)'. Let us introduce new dimensionless variables xX,z*,Y, ma y,, time T, the 
dimensionless coordinates E, v and E,the angular velocities oIand o, and the parameters a, b 
.3na n. usina the formulae 

x1)=(BMgh)%,, y;=yt, i=l, 2; 
Mgh ‘cc - 

( ) B 
‘1. t 

&CC, v=;==l++l +q, <=s 

D 
a=-m” 

(BMgh)“’ 

(,,B A, b+ n=G 

Then, 

2E=azia+ %~QY* + bssa f b~h-l-@~(% -k(h) YI* -I- 

Q(Y+Y)Yl* -anzl&*-(a- i)Zi*Ys* + 
a - i - bn) qs~yg~ + (Q - or - 2a (Y + Al) n) zlyl’ya - 

(+ ) 
co, + os ssyla + (252 - OS - 2b (ol + ti) 16) xsyiys’ + 

(+ ol’ + +ws (+ ol + WI)) ~1’ + h*rylsy*P + horys’ + 

A 
( 

ml* + 2PZ1Yt + $ Q*Y**) (2?iYi- 6’) -t, 

2n 
( 
bZiz* + $ pz*ys -I- YxlYl i- i YnYly*)(- EYl i- fiY* -k 8)- 

G n ( bzss + %s*Yi + -$$ YiS)(%Y* + E') + 

(- 
2Y*+YI*Y*++) &_yl*_y**+~ + _q + 

j&+(-2+ ?/1* +Ys*)v +(2Y1-$)5 

(2.2) 

Here 

Q=(a-i)ol+aor, h**=~(a-1)~(w-k%)+ 

$(28-am)y+(1---$)(i-+)~‘f 

(+_f_$) olf&++o**-+ t8(8--20;))n 

~*=-(i-_$)(~+~)Bq-_~~+ 

+((+ - $)oI+Y)or+ (‘-$)(++l* 

We shall investigate the stability of the uniform rotations (2.1) of the gyrostat with 
respect to pe,p,,0, cp,p* for parametric perturbations of its constructional parameters (see 
/10/I * 

3. We shall henceforth assume that in a small vicinity of the contact point between the 
gyrostat ana the plane during the steady motion (2.1), the surface of the housing defined by 
the equation 

f (&'I n', E') = 0 (f(0, --h, 0) = 0) (3.1) 
is close to an ellipsoid, one axis of which lie on the Sn' axis so that 

f (E', q', c) = - T)’ - h + + (J'r* - 2QE’6’ + Rc’l) + & (PE’s - 2QE’5’ + R5’*)’ (3.2) 

P=F+ e, Q=(+---$)sinsceae 

Here r,and r,are the principal radii of curvature of the surface (3.1) at the point (0, 
--h, 0), e is the angle between the SC’ axis and the direction of principal curvature correspond- 
ing to r,, which is measured anticlockwise from the SC’ axis looking towards the Sq' axis 
directed vertically upwards during the unperturbed motion (2.1). 

Let us introduce the dimensionless quantities 

Then, considering (3.2), we obtain the following expressions for the dimensionless 
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coordinates g, q, c by means of the dimensionless perturbations Yl,Yl with accuracy to within 
fourth-order terms with respect to the perturbations 

E=lY~-llsY~+~{-z~~--~~~~~+ 
(3.3) 

w -t 2q Y&Y* - l(318 - 1) ytg** + z* (I* - +) y*“} 

tl = -’ 1 i- -& (b/la - 2lYlYS + ZrY2) + + (- 11 (3L1 - -g yx4 + 

1 124- $) 
( n% - (6 (UP + 219 - 411) yP.y? + 

1 121 
i ~-~)y~~*~-lp(3z*-$)~~4] 

5 = ZlYi - ZYP + + (-. Zl(Z1 - -g) yr” + 3&ytPy* - 

Wz -I- 21*-h) YlY2 + l(l* - -g) ?g} 

On substituting formulae (3.3) into (2.2), we obtain the final expansionoftheHam.i.lton 
functions of our system, with an accuracy to within fourth-order terms, 

H=IV,-+&-+... (3.4) 

Hk = ,vzk hv,~.~~~,~l~'~:av'~ly~~~v~ 

where Y~,v~,v~,v, are non-negative integers, and 1 v 1 = v1 f vs + vII -k vlrk = 2,4. The non-zero 
coefficients hy,VzV,u, have the form 

2h UJOO = 6 hl,,, = Q, 2h,,,, = b, &I 3 = @I 

Zh ooeo = 01 (o, + %f - (1. - Zd, 2hooos = Q 6% + %I - 
(1 - Zd 

h 0011 = - 1, 2h,,,, = an (11 (2 - 1,) - 1) 

h 1011 - - an1 (1 - 11), 2h,,,, = - (a - I) - anP 

h ll%O = - bnl (i - Z1), h,,,, = a - 1 - bn (1 + 1% + l& - 

Z, - ZJ, h,,oz = - bnZ (f - Z,), hloso = - o,ni (1 - z,) 

2h~oa~=R-~-2(u(~~+o~)-~z~(2-Zh)f 
:* (18 + l& - 11 - 12)) n, hlola = - (2Q3 (1 - C) + 

WI1 (1 - 12)) n, 2hlOOS = - (G- I! - wa + 2RPn 
) 

2holw = P - $ nt2, home= -+l(l-Z~) 

2kmz = -+(i-Zle(2-_a)), 2ho,=+lfon- 

2 $ mpl*, hole1 = - + nl (Q (2 - 11) -/- 20% (1 - 1%)) 

2hollr = 2fJ -we -- 
b 

2b (co1 f wa) n -- 2 o (g (Z2 -f- Zils - 11 - la) - 

(3.5) 

co& (2 - IS)) n, ~OIOS = - + Pnl(1 - 12) 

i 
2hw~=+Ya+Tti 

( 
+Wl+op - 

J 
$ i&“n12 - q + 

$ + -i”i-, 2ho,,sl= - + cod (Q (1 - 11) i- wi (1 - 1%)) + 

1(11+ $) 9 Zh,,ora = hrs + + ‘i2 (S&(2 - ZI) - 

2% (P +- l& - E; - 18)) n $- +0&& (2 - la) - 

+- (218 + ids) + -g (Zt. - la -I- I), 2klOlS = 

- ~611(Zt(l-z11)~wr(l-l~))n+~(~~-~) 

2hooo, = her - p ’ Plan --&a+$+& 

Note 3.1. The coefficients of the form H2 depend on seven constructional parameters 

e = (OX, %, a, 6, 4 k? Q, and those of the form HI depend additionally on the parameter n. 

Note 3.2. In /g/ an expansion of the Hamilton function of the system in question was 
obtained in the vicinity of the position of equilibrium which corresponds to the uniform 
rotation of a homogeneous ellipsoid about the vertical, accurate to fourth-order terms. The 
coefficients of this expansion, which depend on three dimensionless parameters k,8, and ,6,, 
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from (3.5). In fact, if we impose some constraints on the gyrostat, the 
will be connected with the above parameters by the expressions 

Let us substitute them into (3.51. we allow for the fact that the dimensionless variable 
and time in /9/ were introduced by formulae different from those in Sect.2, and this corresponds 
to multiplying the coefficients h,,u,,,vAr containing urn, m = 1,2 by the quantity (5k/(& + 8&"'la. 
Then we obtain what is required. 

4. Consider the domain of admissible values of the parameters 

F = {c : a< b (i + 1). b C a (b + I), a> b (a - 11, 11 > 0, b > 0) 

and the domain of the necessary stability conditions of the solutions of (2.1), 

G = {c : c E F. Q1 > 0, Qa > 0, Q1” - 4Q, > 0) 

In the domain G we shall examine the domain G, of positive definiteness and the region 
Ge of sign alteration of the quadratic form HP of the Hamiltonian 

G, = (c : c E G, A, > 0}, G, = {c : c E G, h < 0) (4-V 

Here 

I= ((b - 1) 01 + bo,) ml- b (1 - 11) (4.2) 

QI = oiz + P ((b - 1) 01 + bw,) - a (1 - 2,) - b (1 - 13) 

Qa = (S’h, - a (1 - 1,)) h. - abl’ 

The frequencies of a system with the Hamiltonian Ha are 

a,,=&(Q1t.l/Q-)~1~ (4.3) 

Further we shall need to consider the resonance hypersurfaces of the first, second and 
fourth order, 

RI = {c:c= F, &r (c) = 0) (4.4) 

RN+~ = {C : c E P, CC, (c) = Na, (C)I, N = 1,3 

It will be shown below that all the domains and hypersurfaces indicated are non-empty, 
R, and R, defining in F the boundary of the domain G and Gs n R,# Qr. 

Let c E G,. In accordance with the Routh theorem complemented by Lyapunov (see, for 
example, /11/j the uniform rotations (2.1) are stable. To examine stability in the cases where 
c~ &+'$,,e~ Ga\ R,,e g Gl fi R,,c= M& one must normalize the Hamilton function. 

Note 4.1. In studying the stability of the uniform rotations of a heavy solid and a 
gyrostat with a fixed point round the principal vertical axis, it was established in /12-14/ 
that in this problem the function Qp may be presented in the form of a product of two Poincarg 
stability coefficients. Consequently, the hypersurface dividing the domains of sign alternation 
and of fixed sign of the Hamiltonian is at the same time a boundary of domain G. In our 
problem, this only holds for I= 0. 

Note 4.2. The problem discussed differs from those in /12-14/ by a large number of 
constructional parameters , and therefore a detailed analysis of domain G can be performed in 
special cases only. 

Note 4.3. The quantities Q1and QI are identical with the corresponding quantities in /6/ 
to within a positive multiplier and apart from notation. 

5. Let us reduce the Hamilton function to normal form. We introduce the following 
notation: 

A (4 = aIs - Q ((b - 1) a1 + bw,) f b (1 - l,) 
l!~ (aA = - 8a,' + o,YJ - sol (1 - &) 

Is (al) .= Pals - b (o$ - a (1 - 1,)) 

To carry out the linear normalization we make the following change: 

(5.1) 

(5.2) 

Let c E G,. Then 
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(5.3) *I = MI (a11 g Wl 8% = - alab (4 
*a = 0, 8, = a, (6 P - a%) g (4, h = bQ? k) 
TV = 1: k-4 g hh t0 = f0 (4 g (al) 
t, = - abk @A aS (4 = 6 111 (aA fr (al) + 

a%Za - f, (al) (b8 - at~,)l-~ 

where 6 is the rank of the canonical transformation of (5.2). We can take 6=1 or &=--1 
fromthecondition for the transformation to be real. The formulae for cl, df (t = 1, 2, 3, 4) 

are found from the expressions for 81 and tt by replacing a,by a, respectively. Substitution 
of formulae (4.2), (4.3), (5.1) and (5.3) yields the final expression through the initial 
parameters of the problem for the coefficient of linear canonical transformation (5.2). 

We write the fourth-order terms in the expansion (3.4) in the variables PI, PI* 41, 9s in 
the form 

6K,= ,~~~~~Y,~~,~,PI~P~~~~~~~~~~~ (5.4) 

and find the coefficients g,,,,., required to study the stability 

~gbOoQ =,~~~~,~,,,sl~~sav~av~4~~ (5.5) 

The coefficient go,,, is obtained from g,,,, by replacing the quantities 8, by ct,gDo40 
by replacing q by tl, and goOO, by replacing 81 by dt (i = 1,2,3,4) 

,%?m,, = $/P,%,%% + %,%+%Plk + %A,%,% + (5.6) 

%Su,c,s, + C,4,%%4 + %blrI%,%) hv,V,V,% 

Here and below the quantities pl, p,, ps, p, are computed from vr,v,, va, V, using the rows 
of the table. To obtain the remaining coefficients with non-zero subscripts 2 and 2 it is 

Table 1 

< 

1 I k j i 

necessary to make the following substitutions on the right-hand side of formula (5.6): 

g,oao : ci + ti; g,,,,: c: -+ d,; gosao : sd -+ hi goror: st * d,; 

gooar: 81 + tt; ci + di (2 = 1, 2, 3, 4) 

6gmoo = ,& hA&&4 + w-~*CkCP. + 9Fr&%b -+ w&w%) bJ*w. 

With respect to (5.7) 

g1oos : c, -+ 4; goal,: st * h 

go,,, : si + ti, CL -t dl (i = 1, 2, 3, 4) 

Gg1*01= x d 
Iv1=4 

*u, ~C,AL, + du,*ucu,cu, -t- wuA,cv + duwwu. + (5.8) 

*,t,wu. 4, + d,,w,,*, + CUP,, d,c, + cu, duswu. + 
q&c, c + cut Qw%b, + %CP1sU. d, + CutCur 4&J ~v,v*v,v. 

With respect to (5.8) 
gl,,, : ct * 4, 4 --t cl; go,,, : si --+ ti 

go,,, : st --f cl, ct --) di, d, + tt 0 = 1, 2, 39 4) 

Let CE G% \ R,. Then the coefficients of the normal form (3.4) are 

2c,o = %,ooo + %oo,o + g,o,o, 2G0, = %o,oo + (5.9) 
3gorr + go2oar Cl1 = gsaoo + gaoo, + go,,, + gooaca 

(see /15, 16/). 
Substituting(3.5), (4.2), (4.3), (5.1), (5.3), (5.5) and (5.6) into (5.9) weobtainthe finalform 

of the coefficients. If D" s c,,a,* + cllalat f co,a18#0, then by the Arnold-Moser theorem and 
its extension to stable motion, the uniform rotations (2.1) are stable (see /16, 15, lZ/). 

Let c E G, fl R,. The coefficient of the resonance term is written in the form 

G, = (%ootll + I100SSP9 2510011 = g1aoo + (5.10) 

go018 - go,11 - g11om %100* = - go,10 + g100, - g1ao1 + go,,, 
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Substituting formulae (3.5), (4.2), (4.3), (5.1), (5.3) and (5.5)-(5.9)into (5.10) weobtain 
the final form of coefficient C,. If I’D” I/a,‘- 3 @C,>O, then in accordance with Markeyev's 
theorem, /lJ/, and its extension to steady motions, /12/, the uniform rotations (2.1) are stable. 
If D” I/a,*--31/3C,<O, the unperturbed motions (3.1) are unstable (see /lJ/). 

Let c~aGn&. This means that CE &or that e belongs to that boundary of the domain 

G, which is defined by a first-order resonance relation. The coefficients of transformation 
(5.2) necessary to study stability have the form 

a1 = b&?,i a, = f, (0) g,, ca = fs (0) 81, c, = - ab&,, g,’ = 
6 if1 (0) fs (0) + a*bP - fr (0) (bB - ~o,)l-~ 

(5.11) 

The fourth-order terms in the new canonical variables in expansion (3.4) are also written 
in the form (5.4), where the coefficient go,,,,,, necessary for the study, is given by Eq.(5.5). 
Subsituting (3.5), and (5.1) into (5.5) when a, =O and (5.11) we obtain the final form of 
the coefficient goroo. If goroo >O, the uniform rotations (2.1) are stable for fixed values of 
the parameters (see /18, 19/). If g,,,,(O, the solutions (2.1) are unstable /18, 19/. 

Let c c aG2 n R,. The coefficients required to investigate sl, ct (1 = 1,2,3,4)of trans- 
formation (5.2) are computed from (5.3), in which the quantities tl should be replaced by 
cl, and g(a,) by g,. Quite cumbersome operations show that g, is chosen from the condition 

2a,*g** = 6 If* (aJ-l (5.12) 

Substitution of formulae (4.2), a, = (&/2)1/l, (5.1) and (5.12) into (5.3) results in the 
final expressions for the coefficients 81 and ct (i = i, 2, 3, 4). 

Using the new canonical variables, we shall write the fourth-order terms of (3.4) in the 
form (5.4), where the coefficients necessary to study the stability, g,,,,,g,,,, and g,,oo are 
found from formulae (5.5) and (5.6). Let,us put 

E = %,,d, + 3&,,, + g,,,, (5.13) 

On substituting formulae (3.5), (4.2), a, =(Q1/2)1/z, I(S.l), (5.12), (5.3), (5.5) and (5.6) 
into (5.13), we obtain the final form of the coefficient E. If E > 0, the uniform rotations 
(2.1) are stable (see /2O, 21/), and for E (0 the steady rotations (2.1) are unstable (see 
/lJ/) . 

Note 5.1. In cases where CE~G, the determining matrix of the system with a Hamiltonian 
H, has non-simple elementary divisors. 

Note 5.2. In the problems discussed in /12-14/, the number of parameters on which the 
coefficients of the form Hk depend, are identical for H, and H,. In our case, the coefficients 
H, depend on an additional parameter n. This means that the uniform rotations of a gyrostat 
on a plane have the following property. If C.E G,, then the stability of rotations of the 
gyrostats whose parameters are represented by point c, cannot influence the change in the 
parameter n. If CEG~, the change in n may, generally speaking, cause D” to vanish. Then 
to study the rotation stability of the corresponding gyrostat we must retain in the expansion 
of H terms of order higher than the fourth. If e belongs to the resonance hypersurface, a 
change in n can, generally speaking , give rise to a change in the stability of the correspond- 
ing rotation to instability, and vice versa. 

A study of the stability of the uniform rotations (2.1) of a gyrostat on an absolutely 
smooth horizontal plane was carried out when in a small neighbourhood of the contact point the 
surface of the housing is specified by Eqs.(3.1) and (3.2). We note that using expansion (2.2) 
of Hamilton's function, one can study the stability of a gyrostat with a surface different 
from (3.1) or (3.2). Here the coefficient of the Hamiltonian in formulae (3.4) and (3.5) changes 
but formulae (5.5)- (5 10) and (5.13) still hold. 

6. The sufficient conditions of stability of the uniform rotations (2.1) of a gyrostat 
were obtained in terms of a constraint of the inequality type imposed on the coefficients of 
the normal forms of the Hamiltonian. These equations have a cumbersome form and, therefore, 
to verify that the corresponding inequalities are satisfied a computer was used. Since the 
number of parameters was high, for clear interpretations of the results obtained it is 
necessary to consider special cases. Below we list briefly the results of a study of two such 
cases. 

Let us assume that 0 = '/* ; then the domain F has the form 

P = {c: b E f/b, 3), h7 0, I,> 0) 
We choose e = n/4, r,lhl = I/%, r,lh = ‘/I,, then 1 = 'I,,, 1, = I,= Vs and we set Il= 1. 
6.1. Let op = 0. This means that the gyroscope does not rotate in relation to the housing, 

i.e. it is an absolute solid. The figure shows domains G, and G,. Domain G1 has a lower bound 
set by a branch of the curve R,(Q,=O) which has a vertical asymptote b = 1, and for o1 = 1.126 
it intersects the straight line b= 3. The uniform rotations of the solid which correspond 
to R, are stable. The size of the domain G,is small compared with that of G,,and all of it is 
placed in a rectangle b ~(0.13; 1.389), ~~~(0.985; 1.084). The domain G, has an upper bound set by a 
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branch of curve &and a lower bound set by a branch of the curve 
RP(@--4Qn= 0) The uniform rotations (2.1) corresponding to A, 
are not stable, unlike the solutions of (2.1) corresponding to 
R,. The curves R, and (Do= 0) do not intersect the domain Go and 
are not shown in the figure. We note that the boundaries of GX 
and Gz have no common point since i=ll,*#O (for the problems 
discussed in /12-14/, it is the point where both coefficients of 
Poincard stability vanish). 

6.2. Let o1 = 0. This means that the housing is in equilib- 
rium, and the gyroscope continues to rotate. In this case the 
domain G, is empty. The domain G, has a lower bound set by a 
branch of curve R, (shown by a dashed line in the figure), which 
for op= 1.323 intersects the straight line b=V6 and for oy= 0.880 
the straight line b= 3. Curve R,is situated slightly above 
curve RI (curve R,is also shown by a dashed line in the figure). 

The uniform rotations (2.1) which correspond to these curves are stable. The curve (DO=O) 
does not intersect domain Gp 

The domains of stability G1 and G, are constructed for the case when o,,o,>O. For 
011 o,<o the corresponding domains are symmetrical about those constructed with respect to 
the Ob. a&is. 

After analysing the special cases we may conclude that the rotation mode discussed in 
Sect.6.2 is prefereable in view of the stability of the rotation mode described in Sect.6.1. 
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